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Abstract. We discuss the special requirements imposed on the underly-
ing cipher of systems which encrypt each sector of a disk partition inde-
pendently, and demonstrate a certificational weakness in some existing
block ciphers including Bellare and Rogaway’s 1999 proposal, propos-
ing a new quantitative measure of avalanche. To address these needs,
we present Mercy, a new block cipher accepting large (4096-bit) blocks,
which uses a key-dependent state machine to build a bijective F function
for a Feistel cipher. Mercy achieves 9 cycles/byte on a Pentium compat-
ible processor.
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1 Introduction

Disk sector encryption is an attractive approach to filesystem confidentiality.
Filesystems access hard drive partitions at the granularity of the sector (or block)
where a sector is typically 4096 bits: read and write requests are expressed in
sector numbers, and data is read and modified a sector at at a time. Disk sector
encryption systems present a “virtual partition” to the filesystem, mapping each
sector of the virtual partition to the corresponding sector, through an encrypting
transformation, on a physical disk partition with the same disk geometry. The
performance is typically better than file-level encryption schemes, since every
logical sector read or write results in exactly one physical sector read or write,
and confidentiality is also better: not only are file contents obscured, but also file-
names, file sizes, directory structure and modification dates. These schemes are
also flexible since they make no special assumptions about the way the filesystem
stores the file data; they work equally well with raw database partitions as with
filesystems, and can be transparently layered underneath disk caching and disk
compression schemes. Linux provides some support for such filesystems through
the “/dev/loop0” filesystem device.

The stream cipher SEAL [17] is well suited to this need. SEAL provides a
strong cryptographic PRNG (CPRNG) whose output is seekable. Thus the entire
disk can be treated as a single contiguous array of bytes and XORred with the
output from the CPRNG; when making reads or writes of specific sectors the



appropriate portion of the output can be generated without the need to generate
the preceding bytes. The same effect can be achieved, somewhat less efficiently,
by keying a CPRNG such as ARCFOUR [10] with a (key, sector number) pair
and generating 512 bytes with which to encrypt the sector. These schemes are
highly efficient and provide good security against an attacker who seizes an
encrypted hard drive and attempts to gain information about its contents.

However, this is not strong against attackers with other channels open to
them. They may have user privileges on the system they’re trying to attack, and
be able to access the ciphertext stored on the hard drive at times when it’s shut
down. Or they may try to modify sectors with known contents while carrying a
drive from place to place. They may even be able to place hardware probes on
the drive chain while logged in as a normal user, and sniff or modify ciphertext.
Against these attacks, SEAL and ARCFOUR (used as described) are ineffective.
For example, an attacker can write a large file of all zeroes and thereby find the
fixed encryption stream associated with many sectors; once the file is deleted,
the sectors might be re-used by other users with secure data to write, and this
data is easily decrypted by XORing with the known stream. Or, if attackers can
make a guess of the plaintext in a given sector, they can modify this to another
plaintext of their choosing while they have access to the drive by XORing the
ciphertext with the XOR difference between the two plaintexts.

File-based encryption schemes defeat these attacks by using a new random
IV for each new plaintext and authenticating with a MAC. However, applying
these techniques directly to sector encryption would require that the ciphertext
for each sector be larger than the plaintext, typically by at least 64 bytes. Thus
either the plaintext sectors would need to be slightly smaller than the natural
hardware sector size, harming performance when mapping files into memory
(and necessitating a thorough re-engineering of the filesystem code) or auxiliary
information would have to be stored in other sectors, potentially adding a seek
to each read and write. In either case the size overhead will be about 1.5 - 3.1%.
It’s worth investigating what can be achieved without incurring these penalties.

SFS [9] uses a keyless mixing transformation on the plaintext before applying
a block chaining stream cipher. This greatly reduces the practical usefulness
of many such attacks, but it falls short of the highest security that pure disk
sector encryption systems can aspire to: that the mapping between each virtual
and physical disk sector appears to be an independent random permutation to
an attacker who expends insufficient computation to exhaustively search the
keyspace. In other words, the theoretical best solution under these constraints
is a strong randomised large block cipher.

Several proposals exist for building large block ciphers from standard crypto-
graphic components such as hash functions and stream ciphers [1, 11, 2]; however,
these are not randomised ciphers, and as Section 2 shows, they have certifica-
tional weaknesses. More seriously, no proposal comes close to offering the perfor-
mance needed: bit rates equal to or better than disk transfer rates. Since small
improvements in disk access efficiency can mean big improvements to every part
of the user experience, and since performance considerations are one of the main



reasons why filesystem encryption is not more widely used, it seems worthwhile
to develop a new cipher designed specifically to meet this need.

The rest of this paper is organised as follows. Section 2 describes a certifica-
tional weakness applicable to several existing classes of large block cipher, and
proposes a quantitiative measure of avalanche based on the attack. Section 3
lays out the design goals for the solution here, a new block cipher Mercy with a
native block size of 4096 bits, and Section 4 describes the cipher itself. Section
5 discusses the design of the cipher in detail with reference to the performance
and security goals of Section 3. Finally Section 6 discusses some of the lessons
learned in the design of Mercy.

2 Avalanche and certificational weaknesses

[14] presents an attack on bidirectional MACs based on inducing collisions in
the internal state of the MAC. This attack can be extended to show a certifica-
tional weakness in some large block cipher proposals. Note that neither keys nor
plaintext can be recovered using this attack; it merely serves to distinguish the
cipher from a random permutation.

In general form, the attack proceeds as follows. The bits in the plaintext
are divided into two categories, “fixed” and “changing”; a selection of the bits
of the ciphertext are chosen as “target” bits. A number of chosen plaintexts
are encrypted, all with the same fixed bits and with changing bits chosen at
random; the attack is a success if a collision in the target bits of the ciphertext
is generated. Let wy, be the length of the key, w; the number of target bits, and
2"r be the number of different plaintexts encrypted: if the following conditions
are met:

— the result is statistically significant, ie the probability of seeing such a
collision under these circumstances from a genuine PRP (approximately
22wp—we=1) jg small; and

— wp < wy — 1, ie the work factor for the attack is less than that for a key
guessing attack against the cipher

then a certificational weakness has been demonstrated. The attack works by
inducing an internal collision in the data path from the changing bits to the
fixed bits; the width of this path determines the number of plaintexts needed and
thus the smallest w), for which the attack can work provides a useful quantitative
measure of avalanche. This attack can easily be converted to use the memory-
efficient parallel collision finding techniques of [20], so memory usage does not
present a serious obstacle to the practicality of the attack if 2"» adaptive chosen
plaintexts can be encrypted.

This attack may be applied to [2] by choosing the first two blocks of the
plaintext as the “changing” bits, and all of the output except the second two
blocks as the “target” bits. If the blocksize of the underlying cipher is 64 bits,
then 233 chosen plaintexts should be sufficient to induce a collision in o, resulting
in a collision in all the target bits as desired; if it is 128 bits, 255 will be needed.



This attack also extends to bidirectional chaining systems, in which the plain-
text is encrypted first forwards and then backwards using a standard block cipher
in a standard chaining mode; in this case, the first two blocks are the changing
bits, all of the ciphertext except the first two blocks are the target bits, and
the number of plaintexts required are as before; the collision is induced in the
chaining state after the first two blocks. If the chaining mode is CBC or CFB,
all of the output except the first block will be target bits, since a collision in the
internal state after the second block means that the second block of ciphertext
is identical.

Note that this attack is not applicable to any of the proposals in [1]; neither
BEAR nor LION claim to be resistant to any kind of chosen plaintext attack,
while LIONESS carries 256 or 320 bits of data between the two halves (depend-
ing on the underlying hash function), which would require 2'2° or 216! chosen
plaintexts; this is outside the security goals of the cipher. However, it can be
applied to BEAST from [11] by inducing a collision in the SHA-1 hash of R**
with 28! chosen plaintexts; the changing bits are the first 160 bits of R**, and the
target bits are all of the ciphertext except the first 160 bits of 7**. This attack
is clearly impractical at the moment but it violates our expectation that the
cheapest way to distinguish a block cipher from a random permutation should
be a brute force key guessing attack.

3 Mercy design goals

Mercy is a new randomised block cipher accepting a 4096-bit block, designed
specifically for the needs of disk sector encryption; it achieves significantly higher
performance than any large block cipher built using another cipher as a primitive,
or indeed than any block cipher that I know of large or small.

It accepts a 128-bit randomiser; it is expected that the sector number will
be used directly for this purpose, and therefore that most of the randomiser
bits will usually be zero. This is also known as a “diversification parameter”
in the terminology of [6], or “spice” in that of [19]. This last term avoids the
misleading suggestion that this parameter might be random and is convenient
for constructions such as “spice scheduling” and “spice material” and is used
henceforth.

Mercy’s keyschedule is based on a CPRNG; the sample implementation uses
[10]. Though [10] takes a variable length key, Mercy does not aspire to better
security than a cipher with a fixed 128-bit key size, so it’s convenient for the
purposes of specifying these goals to assume that the key is always exactly 128
bits.

— Security: Any procedure for distinguishing Mercy encryption from a se-
quence of 2!?8 independent random permutations (for the 2'28 possible
spices) should show no more bias towards correctness than a key guessing
attack with the same work factor. However, we do not claim that ignorance
of the spice used would make any attack harder; it’s not intended that the



spice be hidden from attackers. For this reason, Mercy is not intended to be
a K-secure or hermetic cipher in the terminology of [7].

— Resistance to specific attacks: Mercy is designed to be resistant in par-
ticular to linear and differential attacks, as well as to avoid the certificational
weakness of Section 2.

— Speed: Encryption and decryption should be much faster than disk transfer
rates, even with fast disks and slow processors. Specifically, they should be
faster than 20 Mbytes/sec on a relatively modest modern machine such as
the author’s Cyrix 6x86MX /266 (which has a clock frequency of 233 MHz).
This translates as under 11.7 cycles/byte, within the range of stream ciphers
but well outside even the fastest traditional block cipher rates. The current C
implementation of Mercy achieves 9 cycles/byte; it is likely that an assembly
implementation would do rather better.

— Memory: The cipher should refer to as little memory as possible, and cer-
tainly less than 4kbytes. In many environments, Mercy’s keytables will be
stored in unswappable kernel memory; more important however is to min-
imise the amount of Level 1 cache that will be cleared when the cipher is
used. 1536 bytes of storage are used.

— Simplicity: Mercy is designed to be simple to implement and to analyse.

— Decryption: Decryption will be much more frequent than encryption and
should be favoured where there is a choice.

4 Description of Mercy

Since most of Mercy’s operations are based around 32-bit words, we define Z,, =
Zys2. Vectors are indexed from zero, so a vector P € Z128 of 128 32-bit numbers
will be indexed as (Po, P, .. ,Pi27). The symbol @ represents bitwise exclusive
OR; where + appears in the figures with a square box around it, it represents
addition in the ring Z,,. Least significant and lowest indexed bytes and words
appear leftmost and uppermost in the figures.

Note that some details that would be needed to build a specification of Mercy-
based file encryption sufficient for interoperability, such as byte ordering within
words, are omitted since they are irrelevant for cryptanalytic purposes.

4.1 T box

The T box (T : Zsseg — Zy, Figure 1) is a key-dependent mapping of bytes onto
words. N represents multiplicative inverses in GF(2%) with polynomial base
28 + 2% + 2% + £ + 1 except that N(0) = 0. dy .. . d; are key dependent bijective
affine mappings on GF(2)8.

3
T(z) = Z 2% dyi 1 [N (das[a])]

=0
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Fig. 1. T box, Operation M, Q state machine

4.2 Operation M

M:Z, - Z, (Figure 1) is drawn from David Wheeler’s stream cipher WAKE
[21]; it’s a simple, key-dependent mapping on 32-bit words. The most significant
byte of the input word is looked up in the T box, and the output XORred with
the other three bytes shifted up eight bits; the construction of the 7" box ensures
that this mapping is bijective.

M(z)=2%z0T (L$/224J)

4.3 Q state machine

The @ state machine (Figure 1) maps a four-word initial state and one word input
onto a four-word final state and one word output (Q : Zp X Zy — Zk x Zy)
using taps from a linear feedback shift register and a nonlinear mixing function.

Q(S, SL’) = ((53 53] y750;51752)ay) where Yy= 52 + M(SO + .'L') (1)

4.4 F function

The F,, function (n > 8; Figure 2) accepts a 128-bit spice G € Z} and a 32n-bit
input A € Z% and generates a 32n-bit output B € Z% (F,, : Z2 x Z& — Z1). Fu
(usually just F)) is the F function for the Feistel rounds. Here Sy.. ;14 represents
successive 128-bit states of a state machine; Uy, 43 € Z,, are the successive
32-bit inputs to the state machine, and V4. 3 € Z,, are the outputs.



F,(A,G) =B where
So = (An_t, An_s, A2, An_1)
(Sit1,Vi) =Q(Si,U;)  (0<i<n+4)
G 0<i<4)
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Fig. 2. F function

4.5 Round structure

Mercy uses a six round Feistel structure (Figure 3) with partial pre- and post-
whitening; unusually, the final swap is not omitted. The spice G € Z2 (usually
the sector number) goes through a “spice scheduling” procedure, analogous with
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Fig. 3. Round structure (decryption illustrated)

key scheduling, through which the “spice material” G’ € Z2* is generated based
on the input spice, using the Fy4 variant of the F' function; this forms six 128-
bit “round spices”. Spice scheduling uses a dummy input to the F function; for
this a vector of incrementing bytes H € Z2* is used. P € Z.?® represents the
plaintext, C € Z1?® the ciphertext, and Wy, W; € Z5* the whitening values.
We describe decryption below; since Mercy is a straightforward Feistel cipher
encryption follows in the straightforward way.

3
H; = 2% (4i + j)
=0
GI = F24(H, G)
(Lo, Ro) = (Co...63, Cea...127 © W1)
(Liy1, Riv1) = (Ri, L ® Foa(Ri, Gy 4i13)) (0<i<6)
(Po...63, Pea.. 127) (Le © Wo, Rs)

4.6 Key schedule

The key is used to seed a CPRNG from which key material is drawn; [10] is
used in the sample implementation (after discarding 256 bytes of output), and
is convenient since it’s small and byte oriented, but any strong CPRNG will
serve. Then the procedure in Figure 4 generates the substitutions dy.. 7 and the
2048-bit whitening values Wy, 1.



for i+ 0...7do
d;]0] + random_byte()
for j«<0...7do
do
r + random_byte()
while r € ;[0...27 — 1]
for k< 0...22 —1do
dilk +27] + d;[k] ® r @ d;[0]
fori<+<0...1do
for j < 0...64 do
Wi,j +—0
for k< 0...3do
Wi« Wi+ 28krandom_byte()

Fig. 4. Key schedule pseudocode

An expected 10.6 random bytes will be drawn for each d. Once dy._ 7 have
been determined, a 1k table representing the T box can be generated. During
normal use 1536 bytes of key-dependent tables are used.

5 Design of Mercy

Existing approaches to large block ciphers use a few strong rounds based on
existing cryptographic primitives. These ciphers cannot achieve speeds better
than half that of the fastest block ciphers [2] or a third of the fastest stream
ciphers [1]. Current block cipher speeds don’t approach the needs of the design
goals even before the extra penalties for doubling up, while those solutions based
on stream ciphers pay a heavy penalty in key scheduling overhead that puts their
speeds well below those needed.

Mercy addresses this by using more rounds of a weaker function. This makes
more efficient use of the work done in earlier rounds to introduce confusion in
later rounds, and is closer to a traditional block cipher approach drawn across
a larger block. It also draws more state between disparate parts of the block,
protecting against the certificational weaknesses identified in Section 2.

5.1 Balanced Feistel network

Balanced Feistel networks are certainly the best studied frameworks from which
to build a block cipher, although I know of no prior work applying them to
such large block sizes. They allow the design of the non-linear transformations
to disregard efficiency of reversal and provide a familiar framework by which
to analyse mixing. Balanced networks seem better suited to large block ciphers
than unbalanced networks, since an unbalanced network is likely to have to do
work proportional to the larger of the input and output data width.



Feistel ciphers normally omit the final swap, so that decryption has the same
structure as encryption. However, Mercy implementations will typically encrypt
blocks in-place, and the cost of having an odd number of swaps (forcing a real
swap) would be high, so the last swap is not omitted.

Mercy’s round function, while weaker than those used in [1], is considerably
stronger than that of traditional Feistel ciphers, necessitating many fewer rounds.
The larger block size allows more absolute work to be done in each round, while
keeping the work per byte small.

5.2 Key schedule and S-boxes dg.. .7

The function N used in building the T" box is that used for nonlinear subsitution
in [7]; it is bijective and has known good properties against linear and differential
cryptanalysis, such as low LCmax and DCmax in the terminology of [13]. We use
this function to build known good key-dependent bijective substitutions using
an extension of the technique outlined in [4]; however, rather than a simple
XOR, the d mappings before and after N are drawn at random from the entire
space of bijective affine functions on GF(2)3, of which there are approximately
2702 by determining first the constant term d[0] and then drawing candidate
basis values from the CPRNG to find a linearly independent set. Because the d
functions are affine, the LCmax and DCmax of the composite function d; o N ody
(and siblings) will be the same as those of N itself. The composite functions will
also be bijective since each of the components are, and hence all the bytes in
each column of the T table will be distinct.

However, there are fewer possible composite functions than there are pairs
dp,d;. In fact for each possible composite function, there are 255 x 8 = 2040
pairs dy, d; which generate it. This follows from the following two properties of
N:

Ya € GF(2%) — {0} : Vz € GF(2®) : aN(ax) = N(z)
Vbe0...7:Yz € GF(2®) : N(z¥') = N(z)?

Since both multiplication and squaring in GF(2%) are linear (and hence affine) in
GF(2)® (squaring because in a field of characteristic 2, (z+y)? = 2% +zy +yz +
y? = 22 + y2), both of these properties provide independent ways of mapping
from any pair dy,d; to pairs which will generate the same composite function,
distinct in every case except (a,b) = (1,0). Taking this into account, the number
of distinct composite functions possible is approximately 2294, and there are
246137 functionally distinct keys in total (considering Wy, Wy as well as T').

Little attention has been paid to either the time or memory requirements
of the key schedule, since key scheduling will be very infrequent and typically
carried out in user space.

5.3 Operation M

As with [21], this operation is bijective, since from the least significant byte
of the output the input to the T box can be inferred. We differ from [21] in



using the most significant byte for the lookup rather than the least; this slightly
improves the mixing gained from addition and seems to be very slightly faster
on the author’s machine.

5.4 Q state machine

A key-dependent state machine is an efficient way to bring about strong depen-
dencies between widely separated parts of the block; since the state machine is
reversible, changing a given input word guarantees that every subsequent state
will be different and makes it slightly more likely than chance that every output
word will be different.

The basis of the state machine is 32 parallel four-stage LFSRs based on the
polynomial z*+2°%+1. The input to each LFSR is provided by a nonlinear mixing
chain based on carry bits from other LFSRs and taps into the state which are
then fed into Operation M after addition-based mixing with the input. The use
of an LFSR ensures that any pair of distinct inputs of the same length which
leave the LFSR in the same state must be at least 5 words long.

Every T box lookup depends on the previous lookup, even across rounds.
This goes against the design principles outlined in [18,5] which suggest that
ciphers should be designed to make best use of the parallelism that modern
processors can achieve, and to be wary of the memory latency of table lookups.
A variant on () which allows several T' box lookups to take place in parallel by
taking taps from later in the LFSR is easy to construct, but surprisingly did
not result in any speed improvements on the target platform. Ciphers similar to
Mercy which use this technique to improve parallelism may be appropriate for
other architectures.

Since the Feistel rounds use XOR mixing, @) is also designed such that the
first operation on the input is addition, as is the last operation on the output.
This improves operation mixing, helping to frustrate attacks which model the
cipher using a single algebraic group. XOR is also used within @ for the same
reason.

The output is chosen for the property that, where Q(S,z) = (', y), if either
of S or S’ is known and either of z or y is known, the two unknowns can be
inferred. We prove this in four cases below:

1. S,z known, S’,y unknown: use @ directly.

2. S8',z known, S,y unknown: from Equation 1 we infer y = S} + M (S] + z)
and S = (S}, 54, 4, Sh & ).

3. S,y known, S’z unknown: z = M~(y — S) — Sp (defined since M is
bijective), then apply @) as normal.

4. 8,y known, S,z unknown: find S as in 2 and z as in 3.

5.5 F function

These properties of () are used to build a fast, bijective F function. A bijec-
tive F function lends resistance to a number of attacks, making 2 round itera-
tive differential characteristics impossible and frustrating truncated differential



cryptanalysis, as well as lending confidence that the input is being used effi-
ciently. For a fixed spice G, we infer F’s input A given the output B as follows:
the final state of the state machine is simply the last four words of the output:
Sn+4 = Bp_4..n—1; from this, we can run the state machine backwards up to S
as with point 4 of Section 5.4 above, inferring Ay ,—5 as we do so. We then use
A, _s..nos (which we just inferred) and G to infer Sy using point 2 of Section
5.4 above, which gives us our last four inputs 4,, 4. ., 1-

5.6 Avalanche

This F function does not provide full avalanche between input and output. I see
no secure way to build a balanced full-avalanche F function for large blocks that
isn’t so much slower than Mercy’s F function that the time cost would not be
better spent on more rounds with the weaker F function.

Instead of providing full avalanche, the F function makes two weaker guar-
antees that together are almost as effective:

— A change to any bit of the input will on average change half the bits of the
last 128 bits of the output

— A change to any bit of the last 128 bits of the input will on average change
half the bits of the output

A full avalanche F function achieves avalanche across the whole block after three
rounds. This construction does so after four rounds. In addition, in encryption
and decryption every keytable lookup depends on the result from the previous
lookup.

The partial collision attack from Section 2 will demonstrate that after six
rounds Mercy’s avalanche is imperfect, since only 384 bits of state are carried
between some parts of the block, but such an attack would require that 293
chosen plaintexts be encrypted, and is thus outside the security goals of the
cipher. This suggests a distinction between perfect avalanche, and avalanche
sufficient to defeat cryptanalysis; this distinction is useful since mechanisms for
providing perfect avalanche, such as networks based on Fourier transforms (used
in SAFER [12] and proposed by [16] for large block ciphers), can carry a heavy
performance penalty on large blocks. This distinction is not useful on small
blocks: if this attack is possible against a cipher with a 64-bit block, it will not
require more than 233 chosen plaintexts.

5.7 Whitening

Mercy only whitens one half of the input and output, since the cost both in time
and storage of whitening both halves would be significant, and since the primary
function of whitening is to hide the input of the F function from attackers. On
large block ciphers, whitening also serves to frustrate attacks based on creating
inputs with special structures, such as attempts to induce a repeating state in
the state machine of F.



5.8 Linear and differential cryptanalysis

We do not prove Mercy resistant to either linear or differential cryptanalysis; a
large block cipher meeting the performance goals that could be proven resistant
would be a worthy goal. However, four features of the cipher lend resistance to
these classes of attack.

First, the key dependent subsitutions are optimised against linear and differ-
ential cryptanalysis as described in Section 5.2.

Second, the LFSR-based construction of the () state machine forces any input
to the F function with active substitutions (in the terminology of [7]) to make at
least three substitutions active. In practice, the intent of the F function design is
that any difference in the input causing a difference in a 7" box substitution will
cause all subsequent T box subsitution to be uncorrelated; avoiding this effect
will be very hard for attackers. Most F functions cannot afford the luxury of 68
chained non-linear substitutions.

Third, the initial and final whitening should force attackers to look for dif-
ference propagations or linear correlations over at least four rounds.

Fourth, the ways in which key material is introduced in the F function should
mean that inferring a suggested key from a given plaintext-ciphertext pair should
be extremely difficult.

6 Conclusions

Large blocks are useful in any application where random access to data is de-
sirable, of which sector encryption is a prime example. Mercy is intended to
demonstrate the possibility of building an efficient block cipher for large blocks.
Mercy’s design was inspired by two beliefs:

— Large block sizes can lend useful advantages in security and speed

— Avalanche across large blocks need not be perfect before a cryptanalyst with
limited computing resources cannot distinguish it from perfect, as explained
in Section 5.6.

However, the primary motivation for the design of Mercy is not that the cipher
be directly used for this application; it is to inspire further work where it is
badly needed. Disk encryption suffers none of the barriers to adoption from
interoperability suffered by (for example) email encryption. But it is very rarely
used, and the main barrier to adoption among security conscious users is the high
performance penalties it currently exacts. I hope that Mercy demonstrates that
fast, secure large block ciphers are possible, and inspires better cryptographers
to propose better designs.
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